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T
he vision statement contained in 
NCTM’s Principles and Standards for 
School Mathematics (2000) calls for 
teachers to provide a mathematically 
rich curriculum, draw on knowledge 

from a wide variety of mathematical topics, use rea-
soning and proof techniques to confirm or disprove 
conjectures, work with students individually and in 
groups, and engage in purposeful use of technology. 
In the UTeach Program in the College of Natural 
Sciences, University of Texas, Austin, preservice 
teachers develop curricula that contextualize 
mathematics and offer rich and extended problems 
through the Project-Based Instruction course. 

The lessons presented here were produced 
by author Lauren Siegel, a member of a team of 
preservice teachers who conducted a collabora-
tive field experience to deliver project lessons in 
astronomical telescope design and construction 
to students in second-year algebra courses. This 
sequence of investigations explores how and why 
the physical and mathematical properties of para-
bolic mirrors both enable and constrain our ability 
to build and use telescopes to focus light from dis-
tant objects. The mirrors used in these Newtonian 
telescopes are paraboloids. The geometry of conic 
sections typically studied in algebra 2 and precalcu-
lus courses is directly related to the function of the 

Lauren M. Siegel, Gail Dickinson, 
Eric J. Hooper, and Mark Daniels

Teaching Algebra 
and Geometry 
Concepts by

Modeling
Telescope

Optics

Copyright © 2008 The National Council of Teachers of Mathematics, Inc.  www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.



Vol. 101, No. 7 • March 2008 | Mathematics Teacher  491

mirrors and thus provides a strong link between 
this material and the state’s content requirements 
for these courses. This sequence of investigations, 
inspired by existing lessons in NCTM publica-
tions, mathematics textbooks, lecture notes, and 
colleagues’ suggestions and contributions, were 
refined and enhanced on the basis of student 
responses during two separate presentations of the 
entire project by the same team of UTeach preser-
vice teachers. Various approaches—including gen-
erating and exploring computer models, exploring 
traditional proofs and even making paper models—
are woven together into a coherent set of eleven 
investigations for use in mathematics classrooms.

Preparation for the preservice teachers included 
lessons in astronomy, optics, and telescope func-
tion by author Eric Hooper, whose training enabled 
the inclusion of real design constraints and optical 
properties into the field experience. Teachers with-
out this background can still use the investigations 
presented here as stand-alone units in a mathemat-
ics class. Alternatively, they can coordinate with 
instructors in physics, astronomy, or the history of 
science in a manner recalling the cross-disciplinary 
work of Ryden (1999).

The activities described here, which followed 
a lab activity on light reflection and preceded 
construction of the telescope, were presented to 
students at a Central Texas high school in approxi-
mately 1.5 hours. In a regular classroom setting, 
this ensemble of investigations will likely take a 
minimum of three class periods and more likely 
a week, depending in part on whether related 
homework is assigned. The activities naturally 
divide into three sections: understanding parabolas 
through a variety of approaches (investigations 
1–5); connecting the mathematical properties of 
parabolas with light reflection by parabolic mirrors 
(investigations 6 and 7); and more specific model-
ing of real telescopes like the ones built during the 
field experience (investigations 8–11). Grouping 
the investigations this way allows teachers with 
less time to choose the parts most relevant to their 
curriculum. Teachers who wish to expand these 
investigations can guide students to develop and 
discuss their own solutions.

The investigations include activities and guided 
questions with answers suitable for individual 
work, small-group interactions, or whole-class dis-
cussions. Answers include some student responses 
from classes taught in 2005. They also provide 
anticipated responses and guidance for additional 
instruction. The format encourages students and 
teachers to explore the topic through discourse; to 
find answers through Euclidean proof, modeling, 
experimentation, and investigation; and to connect 
abstract ideas with concrete experiences. 

UNDERSTANDING PARABOLAS
Investigation 1: Making paper-folding models 
and defining a parabola
Students make parabolas by drawing a line and a 
point not on the line (the focus) on wax paper and 
then repeatedly “folding” the point onto different 
parts of the line. Results are a smooth section and 
a creased section. Drawing along the borders, stu-
dents can generate parabolas (see NCTM’s applet 
on parabola paper folding: my.nctm.org/eresources/
view_article.asp?add=Y&article_id=2074&page=9#).

 
Questions 
1. What factors influence the shape of the parabola? 
2. Why does this folding procedure make a parabola?
3. Choose a point on your parabola. Draw a line 
from it to your focus and also drop a perpendicular 
to the line. Redo the fold that generated that point. 
What do you notice? Conduct the same procedure 
on a second point for verification.

Answers
1. The distance from the point to the line deter-
mines the final shape of the parabola.
2. Students responded with “[S]omething to do 
with angles?” The inclusion of a Euclidean proof in 
investigation 3 was added to answer this question.
3. Points on the parabola are equidistant from the 
point and the line. A parabola is a collection of 
points equidistant from the focus (a point) and the 
directrix (a line).

 
Investigation 2: Building a Geometer’s  
Sketchpad model of the paper parabolas 
Students use Geometer’s Sketchpad (GSP) or similar 
software to construct figure 1. Using the command 
Display and then Trace enables students to make a 
tracing on the line (the perpendicular bisector of  

Fig. 1  The trace of the perpendicular bisector mimics the paper-folding activity.
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) that corresponds to the crease from the fold. Drag 
point P′ along the line and note any patterns (fig. 2). 

Questions
1. How is the distance of the focus from the line 
related to the shape of the parabola?
2. How does this distance relate to the focal length, 
that is, the distance from the focus to the vertex?
3. Is your wax-paper parabola consistent with the 
model in GSP?

Answers
1. The parabola is wide when the focus is far from 
the line and very narrow when the focus is close to 
the line.
2. Focal length is half the distance from the focus to 
the line.
3. Yes, students can change the model on the 
screen. Holding the wax-paper models to the screen 
to see the match was particularly effective for our 
students.

Investigation 3: Proving that the paper folds 
are tangents to a parabola
Students can now define a parabola as the set of 
points equidistant from a point and a line. Consider 
a point, P, somewhere on the parabola. Let the focus 
be F, and let P ′ be the point on the directrix clos-
est to P and therefore vertically below P. See fig. 3 
(adapted from a proof at www.cut-the-knot.org/ctk/
Parabola.shtml by Alex Bogomolny; a similar argu-
ment appears in Dennis and Confrey [1995]).

Questions  
1. What kind of triangle is FPP ′? 
2. If T is the midpoint of FP
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, what do we know 
about TP? 
3. Let B be another point on the parabola and rep-
resent the point on the directrix, B′, that is directly 
below B. How does the length of 

FP

TP

BP

BB

BF

FP

PP

FP x a y

x a

′

′

′

′

= − + −

− +

( ) ( )

( ) (

0 2 2

2

.

−− +

′

′

′

′

y y a

FP

PA

FP

P P

FP

AP

FP

A

) ( )

.

2 2 = .

   

  

  

 

FF

PP′

=
+









.

,θ arctan
6 1
45

 compare with 
that of 

FP

TP

BP

BB

BF

FP

PP

FP x a y

x a

′

′

′

′

= − + −

− +

( ) ( )

( ) (

0 2 2

2

.

−− +

′

′

′

′

y y a

FP

PA

FP

P P

FP

AP

FP

A

) ( )

.

2 2 = .

   

  

  

 

FF

PP′

=
+









.

,θ arctan
6 1
45

 and BF? 
4. What can we conclude?

Answers 
1. FPP ′ is an isosceles triangle because it has two 
congruent sides, FP and 
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, according to the defi-
nition of a parabola. 
2. TP is a perpendicular bisector of FP
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. 
3. BP ′ > BB′ and so BP ′ > BF. 
4. All points on the parabola except P are closer 
to F than they are to P′. That is, all points on the 
parabola are on one side of TP  except point P. TP 
is therefore tangent to the curve at P. 

Investigation 4: Placing the paper parabolas in 
the Cartesian plane
We will be placing wax-paper parabolas in the Carte-
sian plane so that we can develop a general formula. 
Give the students grid paper and have them place and 
tape their wax-paper figures onto a coordinate grid. 

Questions
1. Develop and describe a reasoned approach to this 
task so that the placement will facilitate finding a 
formula. 
2. Place your wax-paper parabola onto graph paper 
so that the directrix is parallel to the x-axis, the 
focus is on the y-axis, and the curve faces upward 
with its vertex at (0, 0). Can all our parabolas be 
placed this way? Will this orientation limit our 
proof in such a way that the formula we generate 
will work only for some parabolas?
3. Use a ruler to measure the distance from the focus to 
the origin and from the directrix to the origin. What do 
you find? Is your finding true for each student’s figure?

 
Answers
1. Students gave varying partial answers. Discuss 
until the class arrives at the directions for the sec-

Fig. 2  Results of tracing the perpendicular bisector as P´ slides along the line

Directions:

Move P' along the line.  A
Trace on the perpendicular
bisector of P'F will show the
parabola.

Move the Focus, F, erase
traces, and move P' again to
see a new parabola

         

P', a point on the line a line

perpendicular bisector of FP'

F, a point off the line

Fig. 3  A GSP sketch showing that perpendicular bisectors are tangents to the parabola
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ond group of investigations (Connecting Parabolas 
with Light Reflection). 
2. The parabolas were made without regard to 
orientation of the line and the point, so all can be 
oriented as upward facing with vertex at the origin 
and focus on the y-axis. The resulting general for-
mula applies to upward-facing parabolas only. For a 
GSP demonstration, use the Graph menu and then 
Show Grid to overlay a grid. In our classes, we used 
a GSP image projected onto a large sheet of poster 
paper so that hand-drawn axes, coordinates, and 
notes could be added. GSP can also be used to dis-
play the coordinate plane (fig. 3).
3. The focus, F, and the directrix are equidistant 
from the origin within measurement uncertainties. 

Investigation 5: Using Cartesian coordinates 
to find an algebraic formula for a parabola
Choose an arbitrary point, P, with coordinates  
(x, y) on the parabola used in the previous investi-
gation (fig. 3). 

Questions 
1. What can we say about the coordinates of the 
focus? 
2. What are the coordinates of the point on the 
directrix, P ′, which is directly beneath P?
3. How can we express the distances from F to P 
and from P ′ to P in terms of their coordinates?
4. Use the distance formula to write FP = P ′P in 
terms of the coordinates of the points.
5. The formula we derived is for an upward-facing 
parabola. Can you derive the formulas for three 
other parabolas: downward, right facing, and left 
facing? (See Sullivan and Sullivan 1998.)

Answers 
1. The focus is placed on the y-axis so the x coor-
dinate is 0. The y coordinate is a constant because 
the focus does not change. Use (0, a) for the coordi-
nates of F. Thus, a is the focal length. 
2. P ′ will have the coordinates (x, –a). 
3. We can use the distance formula:
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Now square both sides. Because the terms under 
the square root symbols are all positive, there is no 
lost solution. We have

x2 + a2 – 2ay + y2 = y2 + 2ay+ a2 
and then

x2 = 4ay 

and
y = x2/4a.

This is the general form for an upward-facing 
parabola with its vertex at (0, 0) and focus at (0, a). 
5. Challenge students to find the remaining three 
formulas.

 
CONNECTING PARABOLAS WITH LIGHT 
REFLECTION 
At this point, the lessons move from a general dis-
cussion of parabolas (investigations 1–5) to drawing 
specific connections with the reflection of light in 
parabolic mirrors (investigations 6 and 7). Students 
who have not studied light reflection as ours did may 
need a brief introduction or refresher so that they 
understand that the angle of incidence is the same as 
the angle of reflection with respect to the normal for 
light hitting an arbitrarily curved mirrored surface.

Investigation 6: Showing that incident light 
parallel to the central axis reflects to the 
focus for parabolic mirrors
In this activity, the students use GSP to show the 
reflecting property of the parabola.

Questions 
1. What happens to a ray of light when it hits a flat 
mirror? A concave mirror?  
2. When a ray of light hits a parabolic mirror, how 
is it reflected? 
3. In GSP, build a file that models the path of reflec-
tion of light hitting a parabola and that allows you 
to set the angle of incident light (see fig. 4). Use 
the Transform menu first to mark the normal to 
the mirror and then to reflect the light ray over 
it. How does a light ray reflect when the incident 
angle is 0 degrees with respect to the central axis of 
the parabola? (Note: The GSP sketch models light 

Fig. 4  Incident light and angle control
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from a very distant source, such as a star, which is 
directly in front of a parabolic mirror. For students 
who are not familiar with GSP, this model can be 
built as a demonstration.)
4. Show that the geometry of a parabola is consis-
tent with this effect.

Answers
1. For both, the light reflects back across the nor-
mal, at the point of reflection. 
2. It should reflect about the normal to the 
parabola.
3. When the light is at 0 degrees, the exiting beam 
always reflects to the focus. 
4. Print copies of or project figure 4 onto poster 
paper or a whiteboard. Set the angle of incident 
light to 0 degrees and locate P away from the ver-
tex. By the definition of a parabola, triangle FPP ′ 
is isosceles, so the measure of angle PFP ′ is equal 
to the measure of angle PP ′F. We are certain from 
investigation 3 that the tangent to the parabola at  
P is perpendicular to the normal and to FP
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 are parallel. By noticing this and by using 
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 as transversals, we can use the alter-
nate interior angle theorem and vertical angles to 
show that the angle made by the vertical line (the 
light) through P and through the normal (AP) and 
the angle made through 
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 and through the nor-
mal are always equal for all parabolas. The nature 
of reflection and the structure of the parabola guar-
antee that if light enters a parabolic mirror parallel 
to the central axis, for every point of the parabola, 
it will reflect about the normal to the curve and will 
always go to the focus. 

Investigation 7: Describing parabolic  
reflection for off-axis parallel light rays
Have students use the GSP file from investigation 6 
(see fig. 4) to test different angles of incoming paral-
lel light representing off-axis distant light sources, as 
reflected by mirrors with varying focal lengths. (For 
this activity, it may be helpful to use the Hide com-
mand on FP ′, the directrix, and the tangent lines.)

Questions 
1. With incoming light parallel to the y-axis, record 
the position of the exiting light relative to the focus 
for three different focal lengths.
2. What happens if the light is at an angle with 
respect to the central axis? 
3. Set your light controller to 5 degrees off the cen-
tral axis and restrict your points of reflection to one 
part of the parabola. What do you observe?

Answers 
1. These light rays always reflect to the focus, 
regardless of the focal length selected.

2. As the angle of light increases, parabolic mirrors 
reflect further from the focus. 
3. With incoming light angled at 5 degrees and P 
held close to the vertex, we can easily see that the 
optical focus moves off the central axis.

MODELING REAL TELESCOPES
In the next four investigations (8–11), the modeling 
moves from general light reflection to the specifics 
of the equipment used for the kind of telescopes our 
students constructed. Figure 5 is a photograph of 
the mirror of diameter 6 inches and depression 0.05 
inches that we installed in our telescope, which 
consisted of a sonotube of length 45 inches and 
diameter 8 inches (available at most home improve-
ment centers). The GSP models that we will use 
can also be customized to other optical devices, 
such as ordinary hand mirrors or large research 
telescopes, such as the Hubble Space Telescope. 

Investigation 8: Relating size of telescope 
mirror to the formula for parabola 
Have students apply the formula y = x2/4a, devel-
oped from investigation 5, by using the mirror 
dimensions: 6 inches in diameter with a depression 
of just 0.05 inches. 

Questions 
1. Look at the mirror (see fig. 5). It looks almost 
flat. Could a cross-section be a parabola? 
2. How can we compare this parabola to the models 
we have made in GSP? 
3. What is the focus of the parabola that models this 
mirror?

Answers 
1. Students may suggest that it is a parabola with a 
very high focus.
2. By relating coordinates to the dimensions of the 
mirror, we can calculate a focal length. 
3. Using our formula y = x2/4a, with x = 3 inches and 
y = 0.05 inches, we find that the focus is 45 inches. 

Fig. 5  Mirror with diameter 6 inches and depression 0.05 

inches before installation in class-made telescope
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face that is curved. Note that in practice even this 
restricted field of view is larger than what can be 
achieved with these telescopes because of the small 
size of the second mirror.

The following investigations should be modified if 
students have no access to parabolic mirrors, possibly 
by describing the project activity that followed this 
part of the field experience. Students used a modi-
fied flashlight with cardstock affixed (fig. 8) that can 
project and capture an image in one location to find 
the point twice the focal length from the vertex. 

Investigation 9: Changing the model 
In this activity, students will refine the GSP model 
to match the specifications of the telescope mirror 
and the tube.

Questions
1. How can we make our model in GSP correspond 
to the real mirror?
2. What happens when the light enters the mirror 
at an angle?
3. How can we estimate the range of angle entry 
down the 45-inch tube to the mirror?
4. Use your calculation for angle of entry in the 
model to find the focal surface.

Answers
1. Set the focus to the point (0, 45) and restrict 
points of reflection to points on the parabola where 
–3 ≤ x ≤ 3 (see fig. 6).
2. An optical focus can be found to one side of the 
mathematical focus. 
3. Calculate the most extreme angles of light that could 
enter the telescope (see fig. 7). We have a 45-inch tube 
of diameter 8 inches. A 6-inch diameter mirror in the 
center could not collect light at an angle greater than 
the arctangent of 7/45 inches, or ± 9 degrees.
4. In figure 6, a trace on the reflected beam shows 
5 optical focal points where incoming light is angled 
at approximately ± 9, ± 4.5, and 0 degrees. Students 
may observe that the mirror produces a focal sur-
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Fig. 6  Points of reflection restricted to –3 ≤ x ≤ 3 

Fig. 8  A student uses a flashlight assembly, telescope mirror, and metersticks to measure twice the focal length.

Fig. 7  Partial telescope schematic (eyepiece and second mirror not shown)
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Investigation 10: Modeling point  
source reflection 
Have students make a GSP model of a parabolic mir-
ror that shows what happens when a nearby light 
source reflects off the parabolic mirror (see fig. 9).

Questions
1. Investigate your new model by moving the point 
source around. What happens when you sweep the 
point of reflection around the area close to the ver-
tex of the parabola? 
2. Place the point source on the focus. What do you 
notice?
3. Light reflects about the normal. What happens if 
we reflect light along the normal? 
4. Place a Trace on the axis of reflection. Do the 
normals converge?
5. Now place the point source where the normals 
converge. Move P. What do you observe? Try this for 
several parabolas having different focal lengths. For 
each parabola, use GSP to measure the focal length 
and the position where the normals cross the y-axis.
6. What can we do with a flashlight to find the 
focus of an unknown mirror?

Answers
1. In figure 9, a point source of light is free floating 
and can be moved anywhere. We can model light 
that sweeps across the mirror like a fan by moving 
P along the parabola. By restricting P to the area 
close to the vertex to simulate the actual mirror, we 
can find many optical focus points by changing the 
location of the point source.
2. Light reflects out in parallel rays aligned with the 
central axis. This makes sense because light enter-
ing a telescope in this way reflects to the focus.
3. Light emitted along the normal should return 
along the normal to its source.

4. The normals appear to converge where they 
cross the y-axis, but only if P is restricted to points 
close to the vertex (see fig. 9).
5. The incoming and outgoing light and the normal 
all coincide. At different focal lengths, the normals 
still converge at a point twice the height of the 
focus if P is restricted as before. 
6. Place a sticker with a simple shape (the letter A, 
for example) onto the front glass of a flashlight in 
such a way that the flashlight can still emit light. 
Also attach a piece of heavy paper or cardstock to 
the outside of the flashlight, adjacent to the sticker 
and parallel to the glass, to use as a makeshift 
screen. By shining the modified flashlight straight 
into and at varying distances from the mirror, one 
can find a unique location where an identically 
sized but inverted image of the sticker’s silhouette 
appears sharp and in focus on the paper screen. As 
indicated in the previous two questions and further 
explored in investigation 11, the only location at 
which the object and the focused image both lie 
at the same distance from the mirror is twice the 
mathematical focus of the mirror. Hence, students 
need only find this location for a mirror, measure 
the distance to the mirror, and divide by 2 to get 
the mirror’s focal length (see fig. 8). 

Investigation 11: Demonstrating the  
geometric properties underlying the 
relationship between focal length and 
convergence of normals close to the vertex
In this activity, we show that the geometry of the 
parabola guarantees the effects just observed. Note 
that the light source does not affect the geometry of 
the parabolic mirror. Let A be the point where the 
normal crosses the y-axis (see fig. 4).

Questions
1. Consider the four-sided figure defined by A, F, P ′ 
and P. What are its properties? 
2. What is the y-coordinate of A when P is at (0, 0)?

Answers
1. F, A, P, and P ′ form a parallelogram because the 
normal AP is parallel to FP
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. Opposite sides of paral-
lelograms are congruent, so P ′P = FA. By the defini-
tion of a parabola, P ′P = PF. Therefore, P ′P = PF = 
FA for all parabolas. 
2. We can find the location of A when P is close to 
(0, 0) by using the idea of a collapsing parallelogram. 
We can see that when P is in the neighborhood of 
(0, 0), then P′, P, F, and A are nearly collinear with 
the y-axis and in the limit PF + FA = PA, or 2PF = 
PA. F is always at (0, a), so PF approaches a when P 
approaches (0, 0). This means that the y coordinate 
of A will approach 2a, or twice the focal length, Fig. 9  A GSP model of reflections off a parabolic mirror from a nearby light source
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when P is close to (0, 0). The modified flashlight 
measurement works because the mirror we are using 
is very flat with a focus distant in relation to the 
diameter, bringing us close (actual variation in FA 
for this mirror is less than 0.2% of the focal length) 
to the “limit” situation, where PA is exactly 2 times 
PF. 

At the conclusion of investigation 11, algebra 
2 students were ready to use flashlight and paper 
to locate the focus of the mirror manually (see fig. 
8). During the field experience, we also looked at 
a GSP model of spherical mirrors and discussed 
the similarities between spherical and parabolic 
mirrors. Students can further explore the parabola 
as a locus of points (Olmstead 1998) or investigate 
spherical aberration (see the Web site Amazing 
Space). 

Conclusion
Our students were very engaged in all aspects of 
this lesson and enjoyed benefits similar to those 
reported by Erbas et al. (2005). Connecting paper 
folding and GSP models as well as introducing the 
specifics of the mirror and telescope were particu-
larly useful. Students were able to review the mate-
rial in a variety of ways. By making a model to cer-
tain specifications and then exploring the model’s 
properties, students gained a concrete understand-
ing of the properties of a parabola as they apply to 
a real mirror. They were also challenged to recall 
and apply their previous knowledge of coordinate 
systems, the distance formula, reflections, and basic 
geometric proof. Projecting the GSP models onto 
the poster paper imparted an interactive element to 
the whole-group lessons and provided opportunities 
to draw connections across media. 

For the preservice teacher as well as the high 
school students, this experience was a success-
ful combination of mathematics and astronomy 
through technology, traditional proof, and project-
based collaboration that we hope will be useful to 
other teachers interested in implementing NCTM’s 
Standards and goals. 
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